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Abstract

Understanding and interpreting the decisions made by

deep learning models is valuable in many domains. In com-

puter vision, computing heatmaps from a deep network is

a popular approach for visualizing and understanding deep

networks. However, heatmaps that do not correlate with

the network may mislead human, hence the performance of

heatmaps in providing a faithful explanation to the under-

lying deep network is crucial. In this paper, we propose

I-GOS, which optimizes for a heatmap so that the classi-

fication scores on the masked image would maximally de-

crease. The main novelty of the approach is to compute

descent directions based on the integrated gradients in-

stead of the normal gradient, which avoids local optima

and speeds up convergence. Extensive experiments show

that the heatmaps produced by our approach are more cor-

related with the decision of the underlying deep network, in

comparison with other state-of-the-art approaches.

1. Introduction

In recent years, there has been a lot of focus on ex-

plaining deep neural networks. In the computer vision do-

main, one of the most important explanation techniques is

the heatmap approach [9, 5, 10], which focuses on gener-

ating heatmaps that highlight parts of the input image that

are most important to the decision of the deep networks on

a particular classification target.

Some heatmap approaches achieve good visual qual-

ities for human understanding, such as several one-step

backpropagation-based visualizations including Guided

Backpropagation (GBP) [7] and the deconvolutional net-

work (DeconvNet) [9]. These approaches utilize the gradi-

ent or variants of the gradient and backpropagate them back

to the input image, in order to decide which pixels are more

relevant to the change of the deep network prediction. How-

ever, whether they are actually correlated to the decision-
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Figure 1. Heatmap visualizations can be verified by testing the

CNN on deletion images (column 3), which blur areas highlighted

on the heatmap, and insertion images (column 4), which blur ar-

eas not highlighted on the heatmap. The first two rows show that

Integrated Gradients [8], Mask [1] may fail on these evaluations.

Using heatmap generated from our I-GOS, CNN no longer classi-

fies the deletion image to the same category (column 3), and clas-

sifies the insertion image correctly with only few pixels revealed

(column 4), showing the correlation between the I-GOS heatmap

and CNN decision making. For all approaches the same amount

of pixels (6.4% in this figure) were blurred/revealed.

making of the network is not that clear [2]. [2] proves that

GBP and DeconvNet are essentially doing (partial) image

recovery, and thus generate more human-interpretable vi-

sualizations that highlight object boundaries, which do not

necessarily represent what the model has truly learned.

If these are the goals of a heatmap, a natural idea would

be to directly optimize them. The mask approach [1] gen-

erates heatmaps by solving an optimization problem, which

aims to find the smallest and smoothest area that maximally

decreases the output of a neural network. It can generate

very good heatmaps, but usually takes a long time to con-

verge, and sometimes the optimization can be stuck in a bad

local optimum due to the strong nonconvexity of the solu-

tion space. Another approach called integrated gradients

[8] claims that any change in the output can be reflected in
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their heatmaps. The basic idea is to explicitly find the im-

age that has the lowest prediction score – a completely grey

image, or a highly blurred image usually would not be pre-

dicted to any category by a deep network, and then integrate

the gradients on the entire line between the grey/blurred im-

age to the original image to generate a heatmap. However,

the heatmaps generated by integrated gradients are normally

diffuse, thus difficult for human to understand (Fig. 1).

In this paper, we propose a novel visualization approach

I-GOS (Integrated-Gradients Optimized Saliency) which

utilizes the integrated gradients to improve the mask opti-

mization approach in [1]. The idea is that the direction pro-

vided by the integrated gradients may lead better towards

the global optimum than the normal gradient which may

tend to lead to local optima. Hence, we replace the gradi-

ent in mask optimization with the integrated gradients. Due

to the high cost of computing the integrated gradients, we

employ a line-search based gradient-projection method to

maximally utilize each computation of the integrated gradi-

ents. I-GOS generates better heatmaps (Fig. 1) and utilizes

less computational time than the original mask optimiza-

tion, as line search is more efficient in finding appropriate

step sizes, allowing significantly less iterations to be used.

2. Model Formulation
Mask Optimization: For one-step backpropagation-

based approaches [7, 9], there exits an issue that they only
reflect infinitesimal changes of the prediction of a deep net-
work. In the highly nonlinear function estimated by the
deep network, such infinitesimal changes are not neces-
sarily reflective of changes large enough to alter the deci-
sion of the deep network. What we would expect is that
the heatmaps indicate the areas that would really change
the classification result significantly. In [1], a perturbation
based approach is proposed which introduces a mask M as
the heatmap to perturb the input I0. M is optimized by
solving the following objective function:

argmin
M

Fc(I0,M) = fc
(

Φ(I0,M)
)

+ g(M),

where Φ(I0,M) = I0 ⊙M + Ĩ0 ⊙ (1−M), (1)

g(M) = λ1||1−M ||1 + λ2TV(M), 0 ≤ M ≤ 1

In (1), fc(I) represents the prediction output of a black-

box deep network f on class c from an image I; M is

a matrix which has the same shape as the input image I0
and whose elements are all in [0, 1]; Ĩ0 is a baseline im-

age with the same shape as I0, which should have a low

score on the class c, fc
(

Ĩ0
)

≈ minI fc(I), and in prac-

tice either a constant image, random noise, or a highly

blurred version of I0. This optimization seeks to find a dele-

tion mask that significantly decreases the output score, i.e.,

fc
(

I0 ⊙M + Ĩ0 ⊙ (1 −M)
)

≪ fc(I0) under the regular-

ization of g(M). g(M) contains two terms, with the first

term on the magnitude of M , and the second term a total-

variation (TV) norm to make M more piecewise-smooth.

Although this approach of optimizing a mask performs

significantly better than the gradient method, there exist in-

evitable drawbacks when using a traditional first-order al-

gorithm to solve it. First, it is slow, usually taking hundreds

of iterations to obtain the heatmap for each image. Sec-

ond, since the model fc is highly nonlinear in most cases,

optimizing (1) may only achieve a local optimum, with no

guarantee that it indicates the right direction for a significant

change related to the output class (Fig. 1 and Fig. 3).

Integrated Gradients: Note that the problem of find-

ing the mask is not a conventional non-convex optimiza-

tion problem. For Fc(I0,M) = fc(I0,M) + g(M), we

(approximately) know the global minimum (or, at least a

reasonably small value) of fc(I0,M) in a baseline image

Ĩ0, which corresponds to M = 0. The integrated gradi-

ents approach [8] considers the straight-line path from the

baseline Ĩ0 to the input I0. Instead of evaluating the gra-

dient at the provided input I0 only, the integrated gradi-

ents would be obtained by accumulating all the gradients

along the path. [8] proved that it satisfies an axiom called

completeness that the integrated gradients for all pixels add

up to the difference between the output of fc at the input

I0 and the baseline Ĩ0, if fc is differentiable almost ev-

erywhere. In practice, the integral in integrated gradients

is approximated via a summation. We sum the gradients

at points occurring at sufficiently small intervals along the

straight-line path from the input M to a baseline M̃ = 0:

∇IGfc(M) = 1
S

∑S
s=1

∂fc

(

Φ
(

I0,
s

S
M

)
)

∂M
, where S is a con-

stant, usually 20. Integrated gradients have some nice theo-

retical properties and perform better than the gradient-based

approaches. However, the heatmap generated by the inte-

grated gradients is still diffuse (Fig. 1 and Fig. 3).

I-GOS: We believe the above two approaches can be

combined for a better heatmap approach. The integrated

gradient naturally provides a better direction than the gradi-

ent in that it points more directly to the global optimum of

a part of the objective function. One can view the convex

constraint function g(M) as equivalent to the Lagrangian

of a constrained optimization approach with constraints

‖1−M‖1 ≤ B1 and TV (M) ≤ B2, B1 and B2 being pos-

itive constants, hence consider the optimization problem (1)

to be a constrained minimization problem on fc(Φ(I0,M)).
In this case, we know the unconstrained solution in M = 0

is outside the constraint region. We speculate that an opti-

mization algorithm may be better than gradient descent if it

directly attempts to move to the unconstrained optimum.

To illustrate this, Fig. 2 shows a 2D optimization with

a starting point A, a local optimum C, and a baseline B.

The area within the black dashed line is the constraint re-

gion which is decided by the constraint function g(M) and

the boundary of M . A first-order algorithm will follow the

gradient descent direction (the purple line) to the local op-

timum C; while the integrated gradients computed along
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Figure 2. (Best viewed in color) Suppose we are optimizing in a

region with a start point A, a local optimum C, and a baseline B

which is the unconstrained global optimum; the area within the

black dashed line is the constraint region which is decided by the

constraint terms g(M) and the bound constraints 0 ≤ M ≤ 1,

we may find a better solution by always moving towards B rather

than following the gradient and end up at C.

the path PB from A to the baseline B may enable the opti-

mization to reach an area better than C within the constraint

region. We can see that the integrated gradients with an ap-

propriate baseline have a global view of the space and may

generate a better descent direction. In practice, the baseline

does not need to be the global optimum. A good baseline

near the global optimum could still improve over the local

optimum achieved by gradient descent.

Hence, we utilize the integrated gradients to substitute

the gradient of the partial objective fc(M) in optimiza-

tion (1), and introduce a new visualization method called

Integrated-Gradient Optimized Saliency (I-GOS). For the

regularization terms g(M) in optimization (1), we still com-

pute the partial (sub)gradient with respect to M : ∇g(M) =

λ1 ·
∂||1−M ||1

∂M
+ λ2 ·

∂TV(M)
∂M

.

The total (sub)gradient of the optimization for M at each

step is the combination of the integrated gradients for the

fc(M) and the gradients of the regularization terms g(M):
TG(M) = ∇IGfc(M) + ∇g(M). Note that this is no

longer a conventional optimization problem, since it con-

tains 2 different types of gradients. The integrated gradients

are utilized to indicate a direction for the partial objective

fc(M); the gradients of the g(M) are used to regularize

this direction and prevent it to be diffuse.

Due to the high cost of computing the integrated gra-

dients, we employ a line-search based gradient-projection

method to maximally utilize each computation of the inte-

grated gradients. Line search is more efficient in finding ap-

propriate step sizes, allowing significantly less iterations to

be used. In order to avoid adversarial examples, we add dif-

ferent random noise ns to I0 at each point along the straight-

line path when computing the integrated gradients; and we

set the resolution of the mask M be smaller than the shape

of the input I0, and perturb I0 with Φ(I0, up(M)), where

up(M ) upsamples M to the original resolution of I0.

3. Experiments

We follow [3] to adopt deletion and insertion as metrics

to evaluate the performance of the heatmaps generated by

different approaches. The intuition behind the deletion met-

ric is that the removal of the pixels most relevant to a class

will cause the original class score dropping sharply. The in-

tuition behind the insertion metric is that only keeping the

most relevant pixels will retain the original score as much

as possible, which can eliminate the disturbing from the ad-

versarial attacks. The insertion metric would not score ad-

versarial examples highly, since to achieve a good insertion

score, the deep model needs to make a confident, consistent

prediction using a small part of the image.

We utilize the pretrained VGG19 network [6] from the

PyTorch model zoo to test 5, 000 randomly selected images

from the validation set of ImageNet [4]. Table 1 shows

the comparative evaluations of I-GOS with other state-of-

the-art approaches in terms of both deletion and insertion

metrics. Fig. 3 shows some comparison examples between

different approaches on 224 × 224 heatmaps. From Table

1 we observe that our proposed approach I-GOS performs

better than Excitation BP [10] and Mask [1] in both deletion

and insertion scores for heatmaps with all different resolu-

tions. RISE [3] and Integrated Gradients can only generate

224×224 heatmaps. GradCam [5] can only generate 14×14
heatmap on VGG19. And our approach also beats RISE,

Integrated Gradient, and GradCam in both deletion and in-

sertion scores on heatmaps with the same resolutions. Al-

though Integrated Gradients has some good properties the-

oretically, it gets the worst insertion score among all the

approaches, which indicates that it indeed contains lots of

diffused pixels uncorrelated with the classification, as in the

Cucumber and Oboe examples in Fig. 3. Excitation BP is a

one-step backpropagation-based approach that is better than

other one-step backpropagation-based approaches, and dur-

ing the experiments we find that sometimes it just fires on

the border and corner of the image instead of the contents,

or on irrelevant parts of the image as argued in [2]. Thus,

it performs the worst in the deletion task. RISE also suffers

on the deletion score maybe because of the randomness on

the masks it generates.

We also compare the running time for I-GOS with those

for Mask, RISE, GradCam, and Integrated Gradients on

VGG19. For each approach, we only use one Nvidia 1080Ti

GPU to test 5, 000 images. For I-GOS, the maximal itera-

tion is 15; for Mask, the maximal iteration is 500; for RISE,

the number of random input samples is 4, 000. For I-GOS,

it takes about 5 seconds to generate the heatmap for each

image; for Mask, it takes about 14 seconds; and for RISE, it

takes over 30 seconds. To the best of our knowledge, I-GOS

is the fastest one among these perturbation-based methods.

The average running times for the backpropagation-based

methods (GradCam and Integrated Gradients) are all less
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Figure 3. A comparison among different approaches with heatmaps of 224×224 resolution. The red plot illustrates how the CNN predicted

probability drops with more areas masked, and the blue plot illustrates how the prediction increases with more areas revealed. The x axis

for the red/blue plot represents the percentage of pixels masked/revealed; the y axis for the red/blue plot represents the predicted class

probability. One can see with I-GOS the red curve drops earlier and the blue plot increases earlier, leading to less area under the deletion

curve (deletion metric) and more area under the insertion curve (insertion metric). (Best viewed in color)

Table 1. Evaluation in terms of deletion (lower is better) and insertion (higher is better) scores on ImageNet dataset using the VGG19

model. GradCam can only generate 14× 14 heatmaps for VGG19; RISE and Integrated Gradients can only generate 224× 224 heatmaps.
224×224 112×112 28×28 14× 14

Deletion Insertion Deletion Insertion Deletion Insertion Deletion Insertion

Excitation BP [10] 0.2037 0.4728 0.2053 0.4966 0.2202 0.5256 0.2328 0.5452

Mask [1] 0.0482 0.4158 0.0728 0.4377 0.1056 0.5335 0.1753 0.5647

GradCam [5] – – – – – – – – – – – – 0.1527 0.5938

RISE [3] 0.1082 0.5139 – – – – – – – – – – – –

Integrated Gradients [8] 0.0663 0.2551 – – – – – – – – – – – –

I-GOS (ours) 0.0336 0.5246 0.0609 0.5153 0.0899 0.5701 0.1213 0.6387

than 1 second. However, our approach achieve much better

performance than these approaches, especially with higher

resolutions.

4. Conclusion

In this paper, we propose a novel visualization approach

I-GOS, which utilizes integrated gradients to optimize for

a heatmap. We show that the integrated gradients provides

a better direction than the gradient when a good baseline

is known for part of the objective of the optimization. The

heatmaps generated by the proposed approach are human-

understandable and more correlated to the decision-making

of the model. Extensive experiments show that I-GOS ad-

vances state-of-the-art deletion and insertion scores on all

heatmap resolutions.
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